Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958703

RESUMO

The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.


Assuntos
COVID-19 , Receptores sigma , Animais , Camundongos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Lactoferrina , Ligantes , Difenidramina
2.
Sci Rep ; 13(1): 5060, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977718

RESUMO

The Bacillus anthracis exosporium nap is the outermost portion of spore that interacts with the environment and host systems. Changes to this layer have the potential to impact wide-ranging physiological and immunological processes. The unique sugar, anthrose, normally coats the exosporium nap at its most distal points. We previously identified additional mechanisms rendering B. anthracis anthrose negative. In this work, several new ant - B. anthracis strains are identified and the impact of anthrose negativity on spore physiology is investigated. We demonstrate that live-attenuated Sterne vaccines as well as culture filtrate anthrax vaccines generate antibodies targeting non-protein components of the spore. The role of anthrose as a vegetative B. anthracis Sterne signaling molecule is implicated by luminescent expression strain assays, RNA-seq experiments, and toxin secretion analysis by western blot. Pure anthrose and the sporulation-inducing nucleoside analogue decoyinine had similar effects on toxin expression. Co-culture experiments demonstrated gene expression changes in B. anthracis depend on intracellular anthrose status (cis) in addition to anthrose status of extracellular interactions (trans). These findings provide a mechanism for how a unique spore-specific sugar residue affects physiology, expression and genetics of vegetative B. anthracis with impacts on the ecology, pathogenesis, and vaccinology of anthrax.


Assuntos
Bacillus anthracis , Bacillus anthracis/metabolismo , Açúcares/metabolismo , Esporos Bacterianos/metabolismo , Esporos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Pathogens ; 11(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422614

RESUMO

Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, a disease of humans and animals. It is primarily transmitted through direct contact with contaminated soil and surface water. The epidemiology of this pathogen in Africa, including Uganda, is largely unknown. The objectives of this study were to estimate the seroprevalence of B. pseudomallei in pigs slaughtered in central Uganda and to identify potential hotspots for this pathogen in the country. A total of 1035 pig sera were analyzed for serological responses to B. pseudomallei with type A and type B LPS using OPS type A and OPS type B ELISAs. Of the 1035 samples, 75 (7.25%, 95% CI: 5.8-9%) were seropositive to the OPS-A ELISA using a two standard deviations (SD) cutoff and 19 (1.84%, 95% CI: 1.2-2.9%) at 3 SD. For the OPS-B ELISA, 93/1035 (8.99%, 95% CI: 7.4-10.9%) were seropositive at the 2 SD cutoff, and 28/1035 (2.71%, 95% CI: 1.9-3.9%) at the 3 SD cutoff. Pigs slaughtered in central Uganda were exposed to B. pseudomallei, and there is a higher seroprevalence in the rainy months. Public health awareness campaigns about melioidosis may be needed.

4.
PLoS One ; 17(9): e0274645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129912

RESUMO

Anthrax is a zoonosis caused by the environmentally maintained, spore-forming bacterium Bacillus anthracis, affecting humans, livestock, and wildlife nearly worldwide. Bacterial spores are ingested, inhaled, and may be mechanically transmitted by biting insects or injection as occurs during heroin-associated human cases. Herbivorous hoofstock are very susceptible to anthrax. When these hosts die of anthrax, a localized infectious zone (LIZ) forms in the area surrounding the carcass as it is scavenged and decomposes, where viable populations of vegetative B. anthracis and spores contaminate the environment. In many settings, necrophagous flies contaminate the outer carcass, surrounding soils, and vegetation with viable pathogen while scavenging. Field observations in Texas have confirmed this process and identified primary browse species (e.g., persimmon) are contaminated. However, there are limited data available on B. anthracis survival on environmental substrates immediately following host death at a LIZ. Toward this, we simulated fly contamination by inoculating live-attenuated, fully virulent laboratory-adapted, and fully virulent wild B. anthracis strains on untreated leaves and rocks for 2, 5, and 7 days. At each time point after inoculation, the number of vegetative cells and spores were determined. Sporulation rates were extracted from these different time points to enable comparison of sporulation speeds between B. anthracis strains with different natural histories. We found all B. anthracis strains used in this study could multiply for 2 or more days post inoculation and persist on leaves and rocks for at least seven days with variation by strain. We found differences in sporulation rates between laboratory-adapted strains and wild isolates, with the live-attenuated strain sporulating fastest, followed by the wild isolates, then laboratory-adapted virulent strains. Extrapolating our wild strain lab results to potential contamination, a single blow fly may contaminate leaves with up to 8.62 x 105 spores per day and a single carcass may host thousands of flies. Replication outside of the carcass and rapid sporulation confirms the LIZ extends beyond the carcass for several days after formation and supports the necrophagous fly transmission pathway for amplifying cases during an outbreak. We note caution must be taken when extrapolating replication and sporulation rates from live-attenuated and laboratory-adapted strains of B. anthracis.


Assuntos
Antraz , Bacillus anthracis , Dípteros , Animais , Animais Selvagens , Antraz/epidemiologia , Antraz/microbiologia , Antraz/veterinária , Dípteros/microbiologia , Surtos de Doenças , Heroína , Humanos , Solo , Esporos Bacterianos
5.
Genome Med ; 14(1): 10, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086559

RESUMO

BACKGROUND: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December 2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as antigenically novel SARS-CoV-2 variants continue to emerge across the globe. Viruses require host factors at every step in their life cycle, representing a rich pool of candidate targets for antiviral drug design. METHODS: To identify host factors that promote SARS-CoV-2 infection with potential for broad-spectrum activity across the coronavirus family, we performed genome-scale CRISPR knockout screens in two cell lines (Vero E6 and HEK293T ectopically expressing ACE2) with SARS-CoV-2 and the common cold-causing human coronavirus OC43. Gene knockdown, CRISPR knockout, and small molecule testing in Vero, HEK293, and human small airway epithelial cells were used to verify our findings. RESULTS: While we identified multiple genes and functional pathways that have been previously reported to promote human coronavirus replication, we also identified a substantial number of novel genes and pathways. The website https://sarscrisprscreens.epi.ufl.edu/ was created to allow visualization and comparison of SARS-CoV2 CRISPR screens in a uniformly analyzed way. Of note, host factors involved in cell cycle regulation were enriched in our screens as were several key components of the programmed mRNA decay pathway. The role of EDC4 and XRN1 in coronavirus replication in human small airway epithelial cells was verified. Finally, we identified novel candidate antiviral compounds targeting a number of factors revealed by our screens. CONCLUSIONS: Overall, our studies substantiate and expand the growing body of literature focused on understanding key human coronavirus-host cell interactions and exploit that knowledge for rational antiviral drug development.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/genética , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Chlorocebus aethiops , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Exorribonucleases/metabolismo , Edição de Genes/métodos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
6.
Pathogens ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832669

RESUMO

(1) Background: There is a strong need for prevention and treatment strategies for COVID-19 that are not impacted by SARS-CoV-2 mutations emerging in variants of concern. After virus infection, host ER resident sigma receptors form direct interactions with non-structural SARS-CoV-2 proteins present in the replication complex. (2) Methods: In this work, highly specific sigma receptor ligands were investigated for their ability to inhibit both SARS-CoV-2 genome replication and virus induced cellular toxicity. This study found antiviral activity associated with agonism of the sigma-1 receptor (e.g., SA4503), ligation of the sigma-2 receptor (e.g., CM398), and a combination of the two pathways (e.g., AZ66). (3) Results: Intermolecular contacts between these ligands and sigma receptors were identified by structural modeling. (4) Conclusions: Sigma receptor ligands and drugs with off-target sigma receptor binding characteristics were effective at inhibiting SARS-CoV-2 infection in primate and human cells, representing a potential therapeutic avenue for COVID-19 prevention and treatment.

7.
Nat Commun ; 12(1): 1907, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772012

RESUMO

Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.


Assuntos
Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Fatores de Virulência/genética , Animais , Burkholderia pseudomallei/citologia , Burkholderia pseudomallei/patogenicidade , Linhagem Celular Tumoral , Membrana Celular/microbiologia , Citoplasma/microbiologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Análise de Célula Única/métodos , Vacúolos/microbiologia , Virulência/genética
9.
Biochem Biophys Res Commun ; 538: 173-179, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33309272

RESUMO

There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Although repurposed drugs with favorable safety profiles could have significant benefit, widely available prevention or treatment options for COVID-19 have yet to be identified. Efforts to identify approved drugs with in vitro activity against SARS-CoV-2 resulted in identification of antiviral sigma-1 receptor ligands, including antihistamines in the histamine-1 receptor binding class. We identified antihistamine candidates for repurposing by mining electronic health records of usage in population of more than 219,000 subjects tested for SARS-CoV-2. Usage of diphenhydramine, hydroxyzine and azelastine was associated with reduced incidence of SARS-CoV-2 positivity in subjects greater than age 61. We found diphenhydramine, hydroxyzine and azelastine to exhibit direct antiviral activity against SARS-CoV-2 in vitro. Although mechanisms by which specific antihistamines exert antiviral effects is not clear, hydroxyzine, and possibly azelastine, bind Angiotensin Converting Enzyme-2 (ACE2) and the sigma-1 receptor as off-targets. Clinical studies are needed to measure the effectiveness of diphenhydramine, hydroxyzine and azelastine for disease prevention, for early intervention, or as adjuvant therapy for severe COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Antagonistas dos Receptores Histamínicos/química , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Domínio Catalítico , Chlorocebus aethiops , Células HEK293 , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Ligantes , Ligação Proteica , Receptores Histamínicos/química , Receptores sigma/química , Células Vero
10.
PLoS Biol ; 18(12): e3001052, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370274

RESUMO

Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.


Assuntos
Amino Açúcares/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Desoxiglucose/análogos & derivados , Amino Açúcares/imunologia , Amino Açúcares/metabolismo , Animais , Antraz/genética , Antraz/imunologia , Antraz/metabolismo , Bacillus anthracis/patogenicidade , Evolução Biológica , Desoxiglucose/genética , Desoxiglucose/imunologia , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Surtos de Doenças , Evolução Molecular , Feminino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos A , Mariposas/microbiologia , Oligossacarídeos/genética , Oligossacarídeos/imunologia , Oligossacarídeos/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Esporos Bacterianos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-32708490

RESUMO

(1) Background: Burkholderia pseudomallei is an environmentally mediated saprophytic pathogen that can cause severe disease in humans. It is well known that B. pseudomallei survives in tropical moist soil environments worldwide, but melioidosis is gaining recognition as a public and veterinary health issue in Vietnam. The contribution of animals to human disease is unknown, necessitating further investigation. (2) Methods: Swine sera were collected from two populations, one grazing and one commercially farmed, from three provinces in Vietnam. ELISAs utilizing B. pseudomallei capsular polysaccharide (CPS), outer polysaccharide (OPS), and Hcp1 protein were used to screen serum samples. Positive samples were mapped to the commune level. Seroprevalence calculations and pig population estimates were used to approximate number of swine exposures per commune. (3) Results: Grazing pigs from Hoa Binh had significantly higher seropositivity levels (11.4%, 95% CI: 9.7-13.1) compared to farmed pigs from Ha Tinh and Nghe An (4%, 95% CI: 3.3-4.7). Average swine seropositivity rates were ~6.3% (95% CI: 5-7.9), higher than previously identified in Vietnam (~0.88%). (4) Conclusions: Initial serological sampling identified a significant number of seropositive and potential melioidosis infections occurring in swine in Vietnam. This work is a critical step in understanding the role swine may play in the epidemiology of human melioidosis in Vietnam.


Assuntos
Burkholderia pseudomallei/isolamento & purificação , Melioidose/diagnóstico , Melioidose/veterinária , Testes Sorológicos/métodos , Animais , Anticorpos Antibacterianos/sangue , Burkholderia pseudomallei/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Melioidose/epidemiologia , Estudos Soroepidemiológicos , Suínos , Vietnã/epidemiologia
12.
Sci Rep ; 8(1): 12422, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127446

RESUMO

Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.


Assuntos
Burkholderia pseudomallei/genética , Genes Bacterianos/genética , Animais , Aspartato-Semialdeído Desidrogenase/genética , Linhagem Celular , Reparo do DNA/genética , DNA Bacteriano/genética , Técnicas Genéticas , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
13.
Mol Microbiol ; 109(3): 401-414, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29995308

RESUMO

Gene regulation network in Pseudomonas aeruginosa is complex. With a relatively large genome (6.2 Mb), there is a significant portion of genes that are proven or predicted to be transcriptional regulators. Many of these regulators have been shown to play important roles in biofilm formation and maintenance. In this study, we present a novel transcriptional regulator, PA1226, which modulates biofilm formation and virulence in P. aeruginosa. Mutation in the gene encoding this regulator abolished the ability of P. aeruginosa to produce biofilms in vitro, without any effect on the planktonic growth. This regulator is also essential for the in vivo fitness and pathogenesis in both Drosophila melanogaster and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA1226 regulates many essential virulence genes/pathways, including those involved in alginate, pili, and LPS biosynthesis. Genes/operons directly regulated by PA1226 and potential binding sequences were identified via ChIP-seq. Attempts to confirm the binding sequences by electrophoretic mobility shift assay led to the discovery of a co-regulator, PA1413, via co-immunoprecipitation assay. PA1226 and PA1413 were shown to bind collaboratively to the promoter regions of their regulons. A model is proposed, summarizing our finding on this novel dual-regulation system.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Perfilação da Expressão Gênica , Humanos , Pneumopatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Virulência
14.
PLoS One ; 12(12): e0189018, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253888

RESUMO

Burkholderia spp. are genetically and physiologically diverse. Some strains are naturally transformable and capable of DNA catabolism. Burkholderia pseudomallei (Bp) strains 1026b and K96243 and B. thailandensis strain E264 are able to utilize DNA as a sole carbon source for growth, while only strains 1026b and E264 are naturally transformable. In this study, we constructed low-copy broad-host-range fosmid library, containing Bp strain 1026b chromosomal DNA fragments, and employed a novel positive selection approach to identify genes responsible for DNA uptake and DNA catabolism. The library was transferred to non-competent Bp K96243 and B. cenocepacia (Bc) K56-2, harboring chromosomally-inserted FRT-flanked sacB and pheS counter-selection markers. The library was incubated with DNA encoding Flp recombinase, followed by counter-selection on sucrose and chlorinated phenylalanine, to select for clones that took up flp-DNA, transiently expressed Flp, and excised the sacB-pheS cassette. Putative clones that survived the counter-selection were subsequently incubated with gfp-DNA and bacteria were visualized via fluorescent microscopy to confirm natural competency. Fosmid sequencing identified several 1026b genes implicated in DNA uptake, which were validated using chromosomal mutants. One of the naturally competent clones selected in Bc K56-2 enabled Bc, Bp and B. mallei to utilize DNA as a sole carbon source, and all fosmids were used to successfully create mutations in non-naturally-competent B. mallei and Bp strains.


Assuntos
Burkholderia pseudomallei/genética , DNA Bacteriano/metabolismo , Biblioteca Gênica , Genes Bacterianos , Plasmídeos/genética , Alelos , Cromossomos Bacterianos/genética , Células Clonais , Reprodutibilidade dos Testes , Especificidade da Espécie , Transformação Genética
15.
Mol Microbiol ; 106(6): 976-985, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030956

RESUMO

Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Proteínas de Bactérias/genética , Drosophila/genética , Camundongos , Mutação , Transcriptoma , Fatores de Virulência/genética
16.
Exp Lung Res ; 39(7): 304-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23919375

RESUMO

Upon exposure to particulates, asthmatic individuals are more susceptible to deleterious health effects and increased morbidity and mortality when compared to healthy individuals. These effects are not limited to the respiratory system; increases in acute cardiovascular events have been observed. The development of extrapulmonary illnesses has led to interest in determining whether particles move out of the lungs and whether transport of particles differs for asthmatic individuals. Differences in particle deposition and retention in asthmatic versus normal subjects have been explored in the literature using the gamma camera, a two-dimensional imaging technique. Herein we report the deposition and fate of (64)Cu-labeled 100 nm polystyrene particles in a mouse model of asthma using positron emission tomography (PET). All animals were handled humanely under an approved protocol (UC Davis Institutional Animal Care and Use Committee). Particles were administered by intratracheal instillation and animals were imaged over 48 hours using PET. Biodistribution was determined from images using Regions of Interest (ROI) analysis. After 48 hours, for the asthmatic animals, we observed that ~28% of the initial dose is cleared from the lungs; particle accumulation in small amounts is evident in the GI (gastrointestinal) tract, liver, and bladder. This decrease in lung retention is significantly different when compared to the normal mouse (~11%DD), which showed minimal particle transport out of the lung (P < 0.001). This study indicates that ultrafine particles (UFP) undergo enhanced transport out of the lungs in an asthma model. This observed transport may facilitate the adverse peripheral effects associated with particulate exposure.


Assuntos
Asma/diagnóstico por imagem , Asma/metabolismo , Pulmão/metabolismo , Nanopartículas , Poliestirenos/farmacocinética , Tomografia por Emissão de Pósitrons , Animais , Transporte Biológico , Radioisótopos de Cobre , Modelos Animais de Doenças , Trato Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/diagnóstico por imagem , Fígado/diagnóstico por imagem , Fígado/metabolismo , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Traqueia/diagnóstico por imagem , Traqueia/metabolismo , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
17.
PLoS One ; 8(5): e64554, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737986

RESUMO

The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.


Assuntos
Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Pseudomonas aeruginosa/metabolismo , Animais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Camundongos , Mutação , Fenótipo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Terpenos/metabolismo , Fatores de Tempo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...